367 research outputs found

    Music Genre Classification with ResNet and Bi-GRU Using Visual Spectrograms

    Full text link
    Music recommendation systems have emerged as a vital component to enhance user experience and satisfaction for the music streaming services, which dominates music consumption. The key challenge in improving these recommender systems lies in comprehending the complexity of music data, specifically for the underpinning music genre classification. The limitations of manual genre classification have highlighted the need for a more advanced system, namely the Automatic Music Genre Classification (AMGC) system. While traditional machine learning techniques have shown potential in genre classification, they heavily rely on manually engineered features and feature selection, failing to capture the full complexity of music data. On the other hand, deep learning classification architectures like the traditional Convolutional Neural Networks (CNN) are effective in capturing the spatial hierarchies but struggle to capture the temporal dynamics inherent in music data. To address these challenges, this study proposes a novel approach using visual spectrograms as input, and propose a hybrid model that combines the strength of the Residual neural Network (ResNet) and the Gated Recurrent Unit (GRU). This model is designed to provide a more comprehensive analysis of music data, offering the potential to improve the music recommender systems through achieving a more comprehensive analysis of music data and hence potentially more accurate genre classification

    Co-community Structure in Time-varying Networks

    Full text link
    In this report, we introduce the concept of co-community structure in time-varying networks. We propose a novel optimization algorithm to rapidly detect co-community structure in these networks. Both theoretical and numerical results show that the proposed method not only can resolve detailed co-communities, but also can effectively identify the dynamical phenomena in these networks.Comment: 5 pages, 6 figure

    Phase error compensation for three-dimensional shape measurement with projector defocusing

    Get PDF
    This paper analyzes the phase error for a three-dimensional (3D) shape measurement system that utilizes our recently proposed projector defocusing technique. This technique generates seemingly sinusoidal structured patterns by defocusing binary structured patterns and then uses these patterns to perform 3D shape measurement by fringe analysis. However, significant errors may still exist if an object is within a certain depth range, where the defocused fringe patterns retain binary structure. In this research, we experimentally studied a large depth range of defocused fringe patterns, from near-binary to near-sinusoidal, and analyzed the associated phase errors. We established a mathematical phase error function in terms of the wrapped phase and the depth z. Finally, we calibrated and used the mathematical function to compensate for the phase error at arbitrary depth ranges within the calibration volume. Experimental results will be presented to demonstrate the success of this proposed technique

    Demethylation of the miR-146a promoter by 5-Aza-2’-deoxycytidine correlates with delayed progression of castration-resistant prostate cancer

    Get PDF
    BACKGROUND: Androgen deprivation therapy is the primary strategy for the treatment of advanced prostate cancer; however, after an initial regression, most patients will inevitably develop a fatal androgen-independent tumor. Therefore, understanding the mechanisms of the transition to androgen independence prostate cancer is critical to identify new ways to treat older patients who are ineligible for conventional chemotherapy. METHODS: The effects of 5-Aza-2’-deoxycytidine (5-Aza-CdR) on the viability and the apoptosis of the androgen-dependent (LNCaP) and androgen-independent (PC3) cell lines were examined by MTS assay and western blot analysis for the activation of caspase-3. The subcutaneous LNCaP xenografts were established in a nude mice model. MiR-146a and DNMTs expressions were analyzed by qRT-PCR and DNA methylation rates of LINE-1 were measured by COBRA-IRS to determine the global DNA methylation levels. The methylation levels of miR-146a promoter region in the different groups were quantified by the bisulfite sequencing PCR (BSP) assay. RESULTS: We validated that 5-Aza-CdR induced cell death and increased miR-146a expression in both LNCaP and PC3 cells. Notably, the expression of miR-146a in LNCaP cells was much higher than in PC3 cells. MiR-146a inhibitor was shown to suppress apoptosis in 5-Aza-CdR-treated cells. In a castrate mouse LNCaP xenograft model, 5-Aza-CdR significantly suppressed the tumors growth and also inhibited prostate cancer progression. Meanwhile, miR-146a expression was significantly enhanced in the tumor xenografts of 5-Aza-CdR-treated mice and the androgen-dependent but not the androgen-independent stage of castrated mice. In particular, the expression of miR-146a was significantly augmented in both stages of the combined treatment (castration and 5-Aza-CdR). Additionally, the methylation percentage of the two CpG sites (−444 bp and −433 bp), which were around the NF-κB binding site at miR-146a promoter, showed the lowest methylation levels among all CpG sites in the combined treatment tumors of both stages. CONCLUSION: Up-regulating miR-146a expression via the hypomethylation of the miR-146a promoter by 5-Aza-CdR was correlated with delayed progression of castration-resistant prostate cancers. Moreover, site-specific DNA methylation may play an important role in miR-146a expression in androgen-dependent prostate cancer progression to androgen-independent prostate cancer and therefore provides a potentially useful biomarker for assessing drug efficacy in prostate cancer
    • …
    corecore